Trinity College Dublin
Colaiste na Trionodide, Baile Atha Cliath
The University of Dublin

Low Complexity Multiply-Accumulate
Units for Convolutional Neural Networks
with Weight-Sharing

PASM

James Garland, David Gregg
SFI Project 12/I1A/1381 H 3 '
Date 23 Jan 2019




Research Challenge

“By the year 2600, the world’s population would be standing shoulder to
shoulder, and the electricity consumption would make the Earth glow red-

hot.” 1

— We need to start now to prevent a toasty warm environment!

— Artificial Intelligence (Al) & machine learning (ML) getting more ubiquitous.
— They consume more and more power in data centres.

— How can we stop this increasing power consumption trend whilst getting
ML into off-line embedded devices?

1 Hawking, Tencent WE Summit, 2017.
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Quick Intro to CNNs
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Convolutional neural network (CNN) architecture 2

2 mathworks.com
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The One That Started It All! (AlexNet)
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* CNNs have 100,000’s or more multiply-accumulates, e.g. AlexNet 3

* However, LeNet was the pioneer for OCR 4

* 90% of time in computation is spent in the convolution layer >

3 Krizhevsky et al. 2012.
4 LeCun et al. 1998.
> Farabet et al. 2010.
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Convolution Layer

for (m=0; m<M; m++) |

‘\(; ‘\C M for (Ih=(K/2); Ih<(1H-(K/2)); Ih+=stride) {
W for (Iw=(K/2); iw<(IW-(K/2)): iw+=stride) |

g I" Outpat OH summands=0;
Image IH K Feature Map for (¢=0; ¢<C; c++) |
for(ky=0; kKy<K: ky++) {
", V for(kx=0; kx<K; kx++) {
! || ow summands += image|c|[(Ih+ky)-(K/2)][(iw+kx)-(K/2)] * weights[m][c][ky]]kx]
W l IK outFeature[m][ih/stride][iw/stride] = relu(summands + bias|m]):
— }
K )
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:

* To reduce computation time, systolic array loops are unrolled

 CNN Challenges:
* A lot of data movement required due to megabytes of weight data

* Hardware convolution accelerators could have as many multipliers
as multiply-accumulate (MAC) operations

* Hardware multipliers are large and power hungry. ©

6 Sabeetha et al. 2015.
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Weight Shared CNN Accelerator

Reduce the weight data movement

Pre-trained weights pruned and quantised to 16-256 shared values ’.

Pre-trained weight values are stored in a weights register file.

Values indexed, retrieved, multiplied by corresponding image value.

AL MACs

image|—~4 %! v

87, \* 7 REGISTER + o result
} 1 Multiplier per MAC
- A  Multipliers consume large amounts
pretrained Z of ASIC area and power resource
weights[7w | WEIGHTS w=BitWidth
REGISTER £ :

W (4-32 Bits) )

binIndex | 4— FILE wci=binIndex Bit Width
wcCl (4 to 256 weight bins)

7 Han et al. 2016; 2015.
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We Propose PASM

Multiple-PAS-Shared-MAC (parallel accumulate shared MAC (PASM))

* Multiple parallel accumulate and store (PAS) units followed by one
shared MAC.

* PASs accumulate w bit image into b = 2" bins register file

* Post-pass MAC multiplies weights with binned image values

image}—4
“w W=BitWidth
' (4-32 Bits)
N\t PAS's WCI=binIndex Bit Width
IMAGE (4 to 256 weight bins)
ACCUMULATION
REGISTER
binIndex |4 FILE Z # y
“wcI > W \* AW REGISTER| 757 result
Shared MAC
ﬂ S'
1 1 Multiplier per n PAS's
- Iz\I,EE;IGSI:II'-II-ESI;{ Z therefore less area and power
pretrained . W
weights [7 FILE
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For Reference: A Weight-Shared MAC

binlndex | 0 1 2 3 0

image |26.7| 3.4 | 4.8 |17.7| 6.1

binlndex 0 1 2 3
pretrained

weights 1.7 |04 (1.3 | 2.0

*

+=

result | 98.8
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For Reference: A Weight-Shared MAC
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For Reference: A Weight-Shared MAC

image |26.7( 3.4 | 4.8 |17.7

result
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For Reference: A Weight-Shared MAC

image |26.7| 3.4 | 4.8

result
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For Reference: A Weight-Shared MAC
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For Reference: A Weight-Shared MAC
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PASM In Operation
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PAS Phase PASM Phase

Trinity College Dublin, The University of Dublin



PASM In Operation — PAS Phase

image

bin
index

26.7| 3.4 | 4.8 |[17.7 | 6.1
0 1 2 3 0
+ =
0 1 2 3
bins | 6.1

Trinity College Dublin, The University of Dublin




PASM In Operation — PAS Phase
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PASM In Operation — PAS Phase
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PASM In Operation — PAS Phase
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PASM In Operation — PAS Phase

bins
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PASM In Operation — PASM Phase

pretrained
weights

bins
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PASM In Operation — PASM Phase
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PASM In Operation — PASM Phase
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PASM In Operation — PASM Phase
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Complexity of the PAS

Sub Component Gates | Simple | Weight Shared | PAS
MAC MAC

Adder O(W) 1 1 1

Multiplier O(W?) 1 1

Weight Register O(W) 0 B

Accumulation Register | O(W) 1 1 B

File Port O(WB) 1 2
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PASM - Gate Count Results

e Utilization results show more 66% efficiency increase in NAND2 gate
count for PASM - lower is better.
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PASM - Gate Count Results

e Utilization results show more 66% efficiency increase in NAND2 gate
count for PASM - lower is better.
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PASM - Power Consumption Results

* Power results show 70% lower total power consumption for PASM -
lower is better.
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PASM - Power Consumption Results

* Power results show 70% lower total power consumption for PASM -

lower is better.
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Kernel Idea Published by IEEE CAL

* Short 4 page paper published in IEEE Computer Architecture Letters 8.
 DOI:10.1109/LCA.2017.2656880

e Cited three times (so far!)

8 Garland et al. 2017.
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Extended Research

* Designed three CNN accelerators
* Standard convolution accelerator (no weight sharing).
*  Weight shared convolution accelerator

*  Weight shared convolution accelerator implemented with PASM.
* Designed in System C rather than Verilog

* Optimised / implemented in field programmable gate array (FPGA)
and application specific integrated circuit (ASIC)

 Compared timing, latency, power and gate count of the three designs
in FPGA and ASIC

Trinity College Dublin, The University of Dublin



For Reference: Weight-Shared CNN
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Typical Numbers of MAC Operations

input_channels (C)

32 128 | 512
1x1 | 32 128 il P

kernels (K) 3x3 | 288 | 1152 | 4608
5x5 | 800 | 3200 | 12800
7x7 | 1568 | 6272 | 25088
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Weight-Shared Convolution with PASM
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Development Flow - FPGA and ASIC

Test C, C++, Constraints/
Bench SystemC, Directives
OpenCL APIC
A A4 A
9
C Simulation C Synthesis
\ 4
: -
RTL Vivado HLS VHDL
Adapter Verilog
i
RTL Simulation Packaged IP
A\
¥ v 10
Vivado Sustem Xilinx Cadence
Design Gety;rator Platform Genus
Suite Studio Synthesis
Power Power
Timing Timing
Area Area
Reports Reports

9 Xilinx User Guide 902 Vivado High Level Synthesis.
10 Cadence Genus User Guide.
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PASM in CNN Convolution Layer sxincrease in iatency

ASIC Results 48% less total area
4 bin - 32 bit values, IMG=5 x 5, K=3 x 3, C=15, M=2 53% less total power
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PASM in CNN Convolution Layer s increase in latency

ASIC Results 48% less total area
* 4 bin - 32 bit values, IMG=5 x 5, K=3 x 3, C=15, M=2 53% less total power
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PASM in CNN Convolution Layer sxincrease in iatency

ASIC Results 48% less total area
* 4 bin - 32 bit values, IMG=5 x 5, K=3 x 3, C=15, M=2 53% less total power

Latency Comparison of Accelerators
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8.5% increase in latency

PASM in CNN Convolution Layer 99% fewer bsps

FPGA Results 28% fewer BRAMs
* 4 bin - 32 bit values, IMG=5 x 5, K=3 x 3, C=15, M=2  80% power saving
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8.5% increase in latency

PASM in CNN Convolution Layer 99% fewer bsps

FPGA Results 28% fewer BRAMs
* 4 bin - 32 bit values, IMG=5 x 5, K=3 x 3, C=15, M=2  80% power saving
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8.5% increase in latency

PASM in CNN Convolution Layer 99% fewer bsps

FPGA Results 28% fewer BRAMs
* 4 bin - 32 bit values, IMG=5 x 5, K=3 x 3, C=15, M=2  80% power saving

Latency Comparison of Accelerators

3500

3000
2500
2000

Non-Weight-Shared Weight-Shared Weight-Shared-with-PASM

Latency (Cycles)

Accelerator Type

Trinity College Dublin, The University of Dublin



Extended Idea Published by ACM TACO

25 page paper published in ACM TACO 1L,
DOI: 10.1145/3233300

Cited once (so far!)

11 Garland et al. 2018.
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To Sum Up

* There’s a great need to reduce power and resources in a CNN.

e This will aid power consumption in data centres, allow implementation
in low power embedded devices and save the environment.

* We change the programming model of CNN by rearchitecting the MAC.

* These are optimised / implemented in FPGA and ASIC.
* 8.5% increase in latency for PASM
* ASIC: 48% less total area; 53% less total power
*  FPGA: 99% fewer DSPs; 28% fewer BRAMs; 80% less total power

*  We show timing, power and ASIC gate count and FPGA resources of
the three designs are reduced with only a slight increase in latency.

12 The Irish News, 2018.

Trinity College Dublin, The University of Dublin




Trinity College Dublin

Colaiste na Trionodide, Baile Atha Cliath

The University of Dublin

Thank You

James Garland https://www.scss.tcd.ie/~jgarland/
David Gregg https://www.scss.tcd.ie/David.Gregg/



https://www.scss.tcd.ie/~jgarland/
https://www.scss.tcd.ie/David.Gregg/

