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Abstract

• Convolutional neural networks (CNNs) are very successful deep machine learning technologies.

• CNNs require large amounts of processing capacity and memory bandwidth.

• Proposed hardware accelerators typically contain large numbers of multiply-accumulate (MAC) units.

• One CNN accelerator approach is “weight sharing”:

– Full range of trained CNN weight values are stored in bins;

– Index to bin is used instead of the original weight value, thus reducing data sizes and memory traffic.

• We propose here a novel multiply-accumulate (MAC) circuit that exploits binning in weight-sharing CNNs.

• Rather than computing the MAC directly we:

– Count the frequency of each weight and place the count in a bin.

– Compute the accumulated value in a subsequent multiply phase.

• Proposal allows hardware multipliers in the MAC circuit to be replaced with adders and selection logic.

• Results in fewer gates, smaller logic, and reduced power with a slight latency increase in application specific integrated

circuit (ASIC).

• Results in fewer cells, reduced power when implemented in resource-constrained field programmable gate arrays (FPGAs).

Motivation

• CNNs have lots (100,000s or more) multiply and accumulates.

• Hardware multipliers are large / power hungry in ASICs, Fig. 1
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Figure 1: Weight Shared MAC
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Figure 2: Weight Shared Mac Phase

• An existing approach shows relatively few weight multiplicand values needed in a CNN (weight-sharing).

• We redesign the multiply-accumulate of a weight-shared CNN into a series of accumulators followed by a

multiply-accumulate phase.

• Lower power and smaller area in ASIC and FPGA hardware with slightly increased latency.

Background

• Hardware accelerators for CNN use 8-, 16-, 24- or 32-bit fixed point arithmetic [1].

• A combinatorial w-bit multiplier requires O(w2) logic gates to implement (a large part of the MAC unit).

• Han et al. [2, 3] propose an architecture for accelerating CNNs with their weight-sharing scheme, Fig 1.

• Simple MAC - pre-trained weight values are stored in a weights register file.

• Weights are indexed and retrieved by binIndex and multiplied by the corresponding image value, Fig 2.

Approach

• We propose parallel accumulate shared MAC (PASM) Fig. 3, which is multiple parallel accumulate and

store (PAS) units followed by one shared MAC.

• PAS accumulates image w-bits wide, indexed into image accumulation register file with binIndex b = 2wci.

• Post-pass MAC phase multiplies the weights with clustered image values indexed by binIndex.
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Figure 3: Multiple PAS-Shared-MAC (PASM)

• PASM has two phases:

– PAS phase — accumulate image values into corresponding bins addressed by binIndex, Fig. 4.

– Post-pass MAC phase — multiply image bin values with weights at address binIndex, Fig. 5.

17.7image

+=

binIndex

4.83.426.7

3210

6.1

0

image bins

0 1 2 3

17.74.83.432.8

binIndex

Figure 4: PAS Phase
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Figure 5: Post-pass MAC Phase

• PASM implemented in a CNN layer, Fig. 6.

– M PAS, single MAC -fewer multipliers therefore reduced area and power!

Figure 6: Pasm Implemented CNN

Evaluation

• Comparison of utilization results shows 48% fewer logic gates for a 4-bin PASM, Fig. 7.

Figure 7: Utilization Comparison of PASM

• Comparison of power consumption results shows a 4-bin PASM consumes 53% less total power, Fig. 8.

Figure 8: Power Comparison of PASM

• Latency is dependent upon number of bins. 4-bins has lowest latency increase of 8.55%, Fig. 9.

Figure 9: Latency of differing number of Bins of PASM

Publications

• IEEE CAL DOI: 10.1109/LCA.2017.2656880 - 3 citations at present.

• ACM TACO DOI: 10.1145/3233300 - 1 citation at present.

Conclusions

• MAC re-engineered into a series of accumulators followed by a multiply-accumulate phase (PASM).

• Lower power and smaller area in hardware for varying b bins and varying w bit widths with slight increase

in latency.
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