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Abstract

e Convolutional neural networks (CNNs) are very successful deep machine learning technologies.

e CNNss require large amounts of processing capacity and memory bandwidth.

e Proposed hardware accelerators typically contain large numbers of multiply-accumulate (MAC) units.
e One CNN accelerator approach is “weight sharing’:

— Full range of trained CNN weight values are stored in bins;
— Index to bin is used instead of the original weight value, thus reducing data sizes and memory traffic.

e We propose here a novel multiply-accumulate (MAC) circuit that exploits binning in weight-sharing CNN:gs.
e Rather than computing the MAC directly we:

— Count the frequency of each weight and place the count in a bin.
— Compute the accumulated value in a subsequent multiply phase.

e Proposal allows hardware multipliers in the MAC circuit to be replaced with adders and selection logic.

e Results in fewer gates, smaller logic, and reduced power with a slight latency increase in application specific integrated
circuit (ASIC).

e Results in fewer cells, reduced power when implemented in resource-constrained field programmable gate arrays (FPGASs).

Motivation

e CNNs have lots (100,000s or more) multiply and accumulates.

e Hardware multipliers are large / power hungry in ASICs, Fig. 1
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Figure 1: Weight Shared MAC
Figure 2: Weight Shared Mac Phase

e An existing approach shows relatively few weight multiplicand values needed in a CNN (weight-sharing).

e We redesign the multiply-accumulate of a weight-shared CNN into a series of accumulators followed by a
multiply-accumulate phase.

e Lower power and smaller area in ASIC and FPGA hardware with slightly increased latency.

Background

e Hardware accelerators for CNN use 8-, 16-, 24- or 32-bit fixed point arithmetic [1].

e A combinatorial w-bit multiplier requires O(wQ) logic gates to implement (a large part of the MAC unit).
e Han et al. [2, 3] propose an architecture for accelerating CNNs with their weight-sharing scheme, Fig 1.
e Simple MAC - pre-trained weight values are stored 1n a weights register file.

e Weights are indexed and retrieved by binIndex and multiplied by the corresponding image value, Fig 2.

Approach

e We propose parallel accumulate shared MAC (PASM) Fig. 3, which i1s multiple parallel accumulate and
store (PAS) units followed by one shared MAC.

e PAS accumulates image w-bits wide, indexed into image accumulation register file with binIndex b = 2%,

e Post-pass MAC phase multiplies the weights with clustered image values indexed by binIndex.
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Figure 3: Multiple PAS-Shared-MAC (PASM)

e PASM has two phases:

— PAS phase — accumulate image values into corresponding bins addressed by binIndex, Fig. 4.

— Post-pass MAC phase — multiply image bin values with weights at address binIndex, Fig. 5.
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Figure 4: PAS Phase ,
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e PASM 1implemented in a CNN layer, Fig. 6.
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Figure 6: Pasm Implemented CNN

Evaluation

e Comparison of utilization results shows 48% fewer logic gates for a 4-bin PASM, Fig. 7.
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Figure 7: Utilization Comparison of PASM

e Comparison of power consumption results shows a 4-bin PASM consumes 53% less total power, Fig. 8.
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Figure 8: Power Comparison of PASM

e [Latency i1s dependent upon number of bins. 4-bins has lowest latency increase of 8.55%, Fig. 9.
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Figure 9: Latency of differing number of Bins of PASM

Publications

e IEEE CAL DOI: 10.1109/LCA.2017.2656880 - 3 citations at present.
e ACM TACO DOI: 10.1145/3233300 - 1 citation at present.
Conclusions

e MAC re-engineered 1nto a series of accumulators followed by a multiply-accumulate phase (PASM).

e .ower power and smaller area in hardware for varying 6 bins and varying w bit widths with slight increase
in latency.
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